Органические пленки. Электроды для ЭКГ станут нечувствительными к поту

Ученые создали модель материала, которая сможет стать основой гибких электродов. Он будет устойчив к влаге и высоким температурам, а также менять цвет при дыхании человека, что поможет судить об особенностях дыхания и изменении параметров грудной клетки.

Двумерные пленки, устойчивые к влаге и способные улавливать электрические сигналы, можно создавать из органических полимеров на основе колец из азота и углерода, доказали ученые Института биохимической физики имени Н. М. Эмануэля РАН (Москва). Благодаря этим свойствам из таких материалов можно будет изготавливать нательные электроды для снятия ЭКГ, которым не мешает  человеческий пот.

Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале FlatChem.

Гибкие нательные электроды позволяют отслеживать состояние сердечно-сосудистой системы, считывая электрические импульсы, возникающие при работе сердца. Электроды преобразуют эти сигналы в ток для кардиографа. Для подробной диагностики (например, в случае спортсменов, когда состояние сердца отслеживают во время длительных нагрузок) нужно носить электроды на теле в течение нескольких суток.

Ученые выяснили, что в таких ситуациях чувствительность электрода уменьшается, потому что человек потеет, а вода мешает считыванию сигналов, окисляя материал электрода. Кроме того, использующиеся сейчас электроды с серебряным покрытием не подходят для длительного мониторинга, поскольку серебро, как любой металл, чувствительно к статическому электричеству, которое «накапливается» на поверхности кожи, когда мы прикасаемся к каким-то предметам.

Поэтому вместо серебра лучше использовать гели, которые также защищают от попадания влаги (пота) в пространство между кожей и электродом и изолируют электрод от статического электричества. Однако гели быстро высыхают, поэтому нужно находить другие возможности для снятия ЭКГ.

Ученые из  предложили в качестве нового материала для гибких электродов полимеры из класса триазиновых каркасов — органических соединений, имеющих вид колец из атомов углерода и азота. Авторы использовали компьютерное моделирование, чтобы оценить возможность их получения, стабильность и свойства, а также предложить, где они могут применяться. Выбор пал на молекулу F4-TCNQ, содержащую помимо колец из углерода и азота циановые группы (также из углерода и азота) и атомы фтора.

Важное свойство предложенного соединения — способность оставаться стабильным при сильных механических деформациях, например, сгибании и скручивании более чем на 15–20%. Оно выгодно отличает F4-TCNQ от всех остальных триазиновых каркасов, поскольку обычно материал может вернуться в свое изначальное состояние только при незначительных деформациях (1–5%). При этом, когда грудная клетка человека расширяется и сжимается во время вдоха и выдоха или при сгибании и разгибании мышц, деформации доходят до 15–20%. Именно поэтому материал из F4-TCNQ подходит для изготовления датчиков контроля дыхания и частоты сердечных сокращений, давления и подобных.

Методы компьютерного моделирования позволили нам изучить физико-химические свойства нового слоя, не прибегая к экспериментальному синтезу. Дальнейшие исследования позволят определить потенциальные области применения предсказанной нами структуры и дать рекомендации к ее получению.

  • Анастасия Коровина, исполнитель проекта, младший научный сотрудник, аспирант центра компьютерного моделирования неорганических и композитных наноразмерных материалов Института биохимический физики имени Н. М. Эмануэля РАН.

Кроме того, ученые теоретически доказали возможность синтезировать двумерные пленки на основе молекул F4-TCNQ. Раньше подобные материалы создавались только в объемном (трехмерном) виде. Моделирование показало, что 2D-материал имеет высокую пористость и большую площадь поверхности. Он также может проводить электрический ток. Кроме того, пленка поглощает свет в видимом диапазоне, при этом под действием механических деформаций максимум ее поглощения может сдвигаться в стороны синих или красных длин волн.

На практике это означает, что возможно будет невооруженным глазом наблюдать изменение цвета пленки, наклеенной на грудную клетку, в ходе дыхания спортсмена. По изменению цвета можно будет судить о механических деформациях и особенностях дыхания и изменения параметров грудной клетки. Также материал устойчив к высоким температурам и влаге, а значит, пот не будет мешать считывать электрические импульсы.

На данный момент направление будущих исследований связано с нательными электродами. Мы планируем подробнее исследовать, как изменяется оптический отклик при механических деформациях. Например, пленка в обычном состоянии непрозрачна при комнатном освещении, а когда мы ее растягиваем, она становится прозрачной. Это свойство потенциально позволит использовать такие материалы не только для ЭКГ, но и в качестве оптических и механосенсоров.

  • Дмитрий Квашнин, руководитель проекта, доктор физико-математических наук, старший научный сотрудник, заведующий центром компьютерного моделирования неорганических и композитных наноразмерных материалов Института биохимический физики имени Н. М. Эмануэля РАН

 

Фото в тексте: исполнитель проекта Анастасия Коровина защищает магистерский диплом, основанный на данном исследовании. Автор: Дмитрий Квашнин. Фото на заставке: атомная модель предсказанного монослоя (справа), спектр поглощения и зависимость энергии структур от деформации, по которой определялись механические свойства предсказанных монослоев. Автор: Дмитрий Квашнин. Источник фото: РНФ

Нет комментариев