Для обучения «роящихся» роботов. Создана нейросеть, которая изучит физику толпы

28.06.2021

Российские ученые разработали нейросеть, которая сможет обучать «роящихся» роботов, чтобы они смогли ориентироваться и координировали свои действия в сложной и хаотичной обстановке большого города. Эти данные активно требуются для обучения роботов-курьеров, беспилотников и других автономных устройств, работающих в условиях многолюдных пространств.

Цифровой двойник плотных скоплений хаотически движущихся объектов разрабатывают для задач навигации роботов  студенты НИТУ «МИСиС», ИТМО и МФТИ. Он будет представлять собой веб-сервис с применением графовых нейронных сетей и позволит изучать физику толпы, законы роевого поведения у животных и принципы движения «активной материи». Первые результаты опубликованы в журнале Journal of Physics: Conference Series.

Изображение: боты в ансамбле

Если при движении в потоке людей в метро мы начинаем фокусировать взгляд на ком-то из встречных, мы обязательно остановимся в середине толпы и с кем-то столкнемся. Когда мы расслабленно, «интуитивно» идем сквозь толпу,  то безошибочно выбираем нужную траекторию и лавируем в потоке, никого не задевая. И это умеет почти каждый человек. Так происходит  потому, что мозг работает, как сложная нейросеть. Незаметно для сознания он использует накопленные за годы интуитивные знания, быстро просчитывает меняющиеся условия  и выбирает оптимальный путь.

Современным инженерам очень важно понять, как именно работает эта нейросеть, чтобы перенять ее принципы и интегрировать их в цифровую среду. Задача навигации роботов в плотных скоплениях (людей, машин, других роботов и т.д.) с каждым годом становится всё актуальнее. При этом для успешного управления устройствами необходимо отслеживание и экстраполяция траектории каждого отдельного агента в таких скоплениях, что само по себе является сложной задачей.

 

Подобные системы можно эффективно описывать статистически как «активную материю», в которой каждая частичка сама закачивает энергию в систему, и успешно моделировать такую материю с помощью ансамблей хаотически движущихся роботов  — например, имитировать поведение стаи птиц или косяка рыб. Для этого нужно создать симуляцию активной материи, т. е. сгенерировать роевое поведение.

Изображение: система роботов в движении. Цветом обозначены кластеры

Для реализации подобных систем роевой робототехники многочисленным лабораториям по всему миру необходимы большие «скопища» движущихся по простым законам роботов — как платформы для экспериментальной симуляции   физики толпы. Однако проведение подобных экспериментов требует значительных ресурсов, и доступно не всем научным группам.

«Реализация подобной экспериментальной платформы требует  компетенции в схемотехнике, а для создания достаточного количества структурно однородных роботов необходимы значительные финансовые затраты. В качестве альтернативы  мы предлагаем создание цифрового двойника экспериментальной установки, позволяющего как исключить затраты на её физическую реализацию, так и ускорить и автоматизировать процесс постановки экспериментов. Возможность эффективного построения подобного программного обеспечения подтверждается недавними применениями графовых нейронных сетей в схожих задачах, включая симуляции гидродинамики», — рассказал лидер студенческого научного коллектива, выпускник кафедры «Инженерная кибернетика» НИТУ «МИСиС» Вадим Порватов.

На фото: процесс 3D-печати роботов

По словам  разработчиков, в качестве источника данных для нейросетевого алгоритма используется собранная командой проекта экспериментальная установка, состоящая из 100 движущихся роботов. Движение системы  записывается с помощью видеокамеры. В качестве основного инструмента отслеживания индивидуальных траекторий будут применены алгоритмы, предоставляемые библиотекой OpenCV. Информация о конфигурации установки вместе с полученными в результате движения роботов траекториями будут использованы для обучения графовой нейронной сети.

«Разработанная нейронная сеть позволит научным группам существенно упростить процесс изучения физических процессов в плотных скопления хаотически движущихся частиц, и может поставляться как продукт. Извлечение всех координат и скоростей роботов позволит получить исчерпывающее описание процессов, происходящих в системе, в том числе, информацию о фазовых переходах и кластеризации роботов», — пояснил соавтор исследования,  аспирант Физического факультета ИТМО Никита Олехно.

Использование цифрового двойника позволит проводить отраслевые исследования, связанные с навигацией  в хаотических окружениях.  К примеру, виртуальные симуляции уже применяются компанией NVidia для отработки алгоритмов навигации беспилотных автомобилей. Результаты проекта могут быть использованы для обучения алгоритмов управления наземными дронами, перемещающимися в плотных людских потоках. Подобные симуляции могут быть особенно полезны для тестирования роботов-курьеров.

“На данный момент собрана довольно сложная экспериментальная установка, которую мы и будем дальше использовать для создания цифрового двойника”, — подчеркнул Никита Олехно.

 

Проект стал победителем конкурса студенческих научно-исследовательских работ НИТУ «МИСиС» «турНИР» и получил финансирование в размере 500 тысяч рублей на реализацию.

Пресс-служба НИТУ «МИСиС»

Нет комментариев