«Спящие» очаги туберкулеза и устойчивые к антибиотикам бактерии обезвредит желтый свет

Ученые предложили избавляться от лекарственно-устойчивых и «спящих» форм микобактерий — возбудителей туберкулеза — с помощью желтого света. Эксперименты продемонстрировали, что новый подход позволяет уничтожить 99,99% бактерий всего за 30 минут облучения светом с длиной волны 565 нанометров. 

Туберкулез — инфекционное заболевание, вызываемое бактерией Mycobacterium tuberculosis, — очень плохо поддается лечению из-за того, что его возбудитель стал устойчивым ко многим современным антибиотикам. Россия занимает третье место в мире по количеству больных лекарственно-устойчивым туберкулезом. Более того, даже после успешного на первый взгляд лечения в легких человека могут остаться неактивные — так называемые «спящие» — формы микобактерий.

По данным ВОЗ, Mycobacterium tuberculosis может в таком виде бессимптомно сохраняться у одной четверти пациентов в течение многих лет, вызывая латентную, то есть скрытую форму туберкулеза, которая в 5-10% случаев переходит в активную фазу болезни. Опасность латентного туберкулеза возросла в последние годы в связи с тем, что заражение COVID-19 нередко приводит к «пробуждению» микобактерий, которые в значительной доле случаев оказываются лекарственно-устойчивыми. Поэтому ученые ищут способы бороться с покоящимися и не чувствительными к антибиотикам формами Mycobacterium tuberculosis.

Ученые  Федерального исследовательского центра «Фундаментальные основы биотехнологии» РАН (Москва) и Центрального научно-исследовательского института туберкулеза (Москва) выяснили, что для этой цели хорошо подходит облучение бактерий желтым светом, имеющим длину волны 565 нанометров. Дело в том, что покоящиеся клетки Mycobacterium tuberculosis синтезируют и накапливают большое количество порфиринов — азотсодержащих пигментов, наличие которых было доказано современными методами молекулярного анализа.

Эти соединения высокочувствительны к свету и при его воздействии генерируют активные формы кислорода — частицы, способные повреждать белки и ДНК. Поэтому авторы предположили, что порфирины, которые накапливаются в клетках микобактерий, можно использовать в качестве молекулярного «оружия» против самих бактерий.

Бактерии Mycobacterium tuberculosis внутри клеток макрофагов. Белая стрелка указывает на микобактерию
с красным свечением порфиринов. Источник: M. O. Shleeva et al. / Scientific Reports, 2024.

Чтобы проверить эту гипотезу, исследователи в лабораторных условиях получили покоящиеся формы Mycobacterium tuberculosis и измерили количество порфиринов в их клетках. Оказалось, что уровень этих молекул в шесть раз превышал показатели, характерные для активных бактерий. Когда же ученые добавили в среду, на которой росли микобактерии, 5-аминолевулиновую кислоту — вещество-предшественник порфиринов, — количество порфиринов в покоящихся клетках возросло в 85 раз.

Затем авторы получили экстракты из клеток Mycobacterium tuberculosis и определили длины волн, при которых раствор поглощает максимальное количество света. Среди нескольких выявленных максимумов оказались длины волн, на которых поглощают свет порфирины. Ученые выбрали значение 565 нанометров, соответствующее наиболее чувствительному к свету цинк-порфирину, — и облучили светом с такой длиной волны покоящиеся культуры микобактерий.

В результате 30-минутного эксперимента 99,99% патогенов погибло, чего невозможно достичь применением любых антибиотиков, даже в случае активно растущих микобактерий. Авторы объясняют это тем, что вырабатываемые порфиринами на свету активные формы кислорода нарушили у бактерий дыхательную цепь — комплекс белков, отвечающих за обеспечение клеток энергией. При этом такое же воздействие на активные формы бактерий не дало эффекта, поскольку они практически не накапливают порфирины.

Однако авторы разработали подход, с помощью которого можно стимулировать накопление порфиринов как в спящих, так и в активно размножающихся микобактериях. Для этого ученые предложили предварительно обрабатывать клетки 5-аминолевулиновой кислотой. Это вещество безопасно для человека и уже используется в медицине при диагностике рака, поэтому в рамках предлагаемого подхода пациенты смогут его принимать, просто запивая водой.

 

Кроме того, чтобы смоделировать реальные условия заболевания, авторы поставили такой же эксперимент на активно размножающихся и «спящих» бактериях, которых поглотили макрофаги — клетки иммунной системы, участвующие в защите человеческого организма от болезнетворных микроорганизмов, в том числе возбудителя туберкулеза.

При выдерживании макрофагов с микобактериями в среде с 5-аминолевулиновой кислотой такие «съеденные», но не разрушенные макрофагами микобактерии оказались еще более чувствительными к свету, чем свободно растущие микобактерии — как «спящие», так и активные. Это объясняется тем, что внутриклеточная среда макрофагов неблагоприятна для бактерий и снижает их устойчивость к дополнительным разрушающим воздействиям.

Разработанный подход можно будет применять в клинической практике для лечения туберкулеза, доставляя свет нужной длины волны в очаги заболевания с помощью световодов. В частности, для этой цели можно будет использовать волоконно-оптический бронхоскоп — гибкую тонкую трубку, которая практически безболезненно для пациента позволяет врачу рассмотреть очаги туберкулеза в легких. В то же время интересным может оказаться подход, основанный на использовании гибких органических светоизлучающих диодов в качестве источников света.

Эксперименты доказали, что эффективность предложенного подхода достигает 99,99%, поэтому потенциально его можно будет использовать в клинической практике для уничтожения как неактивных очагов туберкулеза в легких человека, так и возбудителя туберкулеза с множественной лекарственной устойчивостью. Однако нам еще предстоит проверить этот метод на лабораторных животных.

Маргарита Шлеева, доктор биологических наук, заведующая лабораторией биохимии стрессов микроорганизмов ФИЦ «Фундаментальные основы биотехнологии» РАН

Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Scientific Reports.


Основные исполнители проекта. Источник: Маргарита Шлеева

Все фото: пресс-служба Российского научного фонда

Нет комментариев