Максимальная эффективность. Новый метод расчета при создании солнечных батарей предложили в ВШЭ

15.06.2021

Профессор МИЭМ ВШЭ Алексей Тамеев с коллегами предложил метод расчета оптимальной толщины фотоактивного слоя, при которой солнечный элемент может показывать максимальную эффективность преобразования энергии. Метод, применимый как к полимерным, так и перовскитным солнечным элементам, может стать важным шагом на пути от лабораторных образцов к производству солнечных батарей из материалов нового поколения. Результаты исследования представлены в статье «A common optical approach to thickness optimization in polymer and perovskite solar cells» в «Scientific Reports».

С каждым годом доля «зелёной», возобновляемой, энергетики в мире только растёт. При этом солнечная – это самый быстрорастущий сегмент альтернативной энергетики. По прогнозам Мирового энергетического агентства (МЭА), к 2040 году доля солнечной энергии в мировой электрогенерации увеличится до 24%. На фоне бурного развития отрасли вопрос себестоимости энергии стоит особенно остро. И за последнее время в этом отношении удалось достичь впечатляющих результатов за счет развития технологий и государственной поддержки.

По данным доклада МЭА, опубликованного осенью 2020 года, стоимость энергии, получаемой от солнечных электростанций, достигла исторического минимума. В Европе и США расценки варьируют от $35 до $55 за МВт·ч, а в Китае и Индии – $20-40 за МВт·ч. Для сравнения: стоимость угля, согласно тому же отчету, колеблется от $55 до $150 за МВт·ч. В докладе говорится, что четыре года назад, по данным Всемирного экономического форума, средняя стоимость солнечной энергии в мире составляла $100 за МВт·ч, а десять лет назад – $300.

«Тем не менее на этом пути нельзя останавливаться, – считает  профессор департамента электронной инженерии НИУ ВШЭ, ведущий научный сотрудник учебно-исследовательской лаборатории функциональной безопасности космических аппаратов и систем Алексей Тамеев. – В исследовании мы сфокусировались на моделировании оптических свойств полимерных и перовскитных солнечных элементов в зависимости от толщины их функциональных слоев. Такие солнечные элементы нового поколения весьма перспективны, так как для их производства подходят более простые и дешевые технологии, чем для привычных кремниевых».

Солнечным панелям из кремния требуется около двух лет, чтобы вернуть энергию, потраченную на добычу и очистку минерала, производство и установку батарей, а подобным панелям из перовскита – всего несколько месяцев. При этом значения КПД лабораторных образцов перовскитных элементов практически догнали кремниевые. Однако масштабирование полимерных и перовскитных элементов требует предварительной оптимизации параметров их функциональных слоев, чтобы минимизировать затраты времени и материалов при разработке технологии производства.

Оптимизация параметров фотоактивного слоя была выполнена в лаборатории по результатам измерений вольт-амперной характеристики солнечных элементов и моделирования эффективного показателя преломления с использованием матрицы переноса в рамках модели Максвелла–Гарнетта. Моделирование показало, что расчеты коэффициента поглощения и темпа генерации экситонов в фотоактивном слое достаточны для определения интервала значений толщины функционального слоя, при котором достигается максимальный КПД устройства. Получено полное соответствие экспериментальных и модельных данных для солнечных элементов разного строения – полимерного и перовскитного.

Важно, что предложенный подход относительно прост и не требует больших затрат времени для определения оптимальных параметров солнечных элементов при разработке экспериментальных образцов фотопреобразователей с повышенным КПД.

Пресс-служба НИУ ВШЭ

Нет комментариев