СПб ФИЦ РАН разработали метод выявления вредоносных групп ботов в социальных сетях - Поиск - новости науки и техники
Поиск - новости науки и техники

СПб ФИЦ РАН разработали метод выявления вредоносных групп ботов в социальных сетях

Сотрудники Санкт-Петербургского Федерального исследовательского центра Российской академии наук (СПб ФИЦ РАН) обучили искусственный интеллект выявлять в социальных сетях группы вредоносных ботов через анализ публичных данных о них, независимо от того, на каком языке они пишут посты и комментарии. Данный подход может использоваться компаниями, которые используют соцсети в коммерческих целях, для выявления и противодействия информационным атакам. Результаты исследования опубликованы в международном журнале JoWUA.

Боты являются важным инструментом для функционирования социальных сетей. Например, они вовлечены в работу чатов поддержки или распространения рекламы, где способны заменить целую команду из реальных людей, автоматически распространяя информацию. Вместе с тем, боты применяются и для неэтичной деятельности, например, для накрутки рейтингов, написания ложных положительных отзывов о товарах и распространения дезинформации. При этом, некоторые виды ботов могут весьма успешно копировать поведение настоящих людей, поэтому их крайне сложно распознать.

“Проблема в том, что в мире существует большое количество соцсетей, все они отличаются друг от друга и содержат информацию на разных языках. Однако мы разработали прототип системы для контроля за групповой деятельностью ботов на основе анализа общих входных данных о самих ботов, который не зависит от языка общения и структуры соцсетей. Такие данные присутствуют в любой соцсети, исходя из принципа ее работы”, – говорит  ведущий научный сотрудник лаборатории проблем компьютерной безопасности Санкт-Петербургского института информатики и автоматизации РАН (СПИИРАН входит в СПб ФИЦ РАН) Андрей Чечулин.

При анализе групп ботов разработчики использовали открытые сведения об неявных социальных связях между аккаунтами. Информация о социальных связях является входными данными для искусственного интеллекта. Ученые изучают ботов, их активность в соцсетях и то, как они взаимодействуют друг с другом и прочими пользователями. Полученные данные позволяют с большой долей вероятности понять какие аккаунты принадлежат людям, а какие являются ботами.

“Для обучения нейросети мы создали специальные группы в социальных сетях, в которые ввели ботов, причем разного качества – и простых, и тех которые могут хорошо маскироваться под реальных пользователей. После проведения анализа, мы оценивали насколько наши методы правильно определяют ботов и справляются с их маскировкой. Проведенные эксперименты показали, что наши подходы могут обнаруживать даже замаскированных ботов”, – считает Андрей Чечулин.

Как отметил участник проекта, младший научный сотрудник СПб ФИЦ РАН Максим Коломеец, эффективность системы оценивается по анализу различных групп ботов и контрольным группам пользователей. Эти группы включают созданных и управляемых автоматически ботов, а также тех, которые созданы и находятся под контролем реальных пользователей. Еще одна группа ботов была сделана из взломанных и заброшенных аккаунтов, пользователи которых выполняют действия за деньги и, конечно, обычные пользователи соцсетей.

“Обмануть систему можно создав очень реалистичный аккаунт. Однако со временем в нем все равно накопится достаточно аномалий, которое наше средство сможет обнаружить. Точность распознавания варьируется от качества ботов – от 60 до 90% при 5-10% ложных срабатываний”, – пояснил исследователь.

Метод, созданный учеными СПб ФИЦ РАН, может не только определять ботов, но и оценивать их качество и примерно рассчитать стоимость атаки. Эти данные могут использоваться для расследования инцидентов безопасности.

“Например, мы смотрим аккаунт в соцсети какого-нибудь ресторана, а там масса негативных комментариев. Мы можем выявить, боты их оставили или реальные люди. Если боты, то ресторан поймет, что на него ведется атака. Кроме того, мы можем определить качество и возможности ботов и понять сколько денег было вложено в эту атаку. Исходя из этих данных, бизнесу будет проще принять меры, чтобы эффективно ответить на эту атаку”, – резюмировал Андрей Чечулин.

На фото: ведущий научный сотрудник лаборатории проблем компьютерной безопасности Санкт-Петербургского института
информатики и автоматизации РАН (СПИИРАН входит в СПб ФИЦ РАН) Андрей Чечулин

 

Проект поддержан грантом Российского научного фонда.

Пресс-служба СПб ФИЦ РАН

 

23.08.2021

Нет комментариев

Загрузка...
Новости СМИ2