Российские ученые разработали новый способ получения слоистых гидроксидов

Исследователи НИУ ВШЭ и ИОНХ РАН имени Н.С. Курнакова показали, как проще и дешевле получать слоистые гидроксиды редкоземельных элементов. Для синтеза использовали оксид пропилена. Реактив помог упростить процедуру и сократить ее на несколько часов. В перспективе метод позволит получать больше гибридных материалов на основе гидроксидов, в том числе фотокатализаторов для очистки воды и люминесцентных материалов для твердофазных термометров. Исследование опубликовано в Russian Journal of Inorganic Chemistry.

Слоистые гидроксиды — материалы, в структуре которых металл-гидроксидные слои чередуются с отрицательно заряженными анионами. В эти слои можно внедрить почти любую анионную молекулу и получить новый гибридный материал. Один из подклассов слоистых гидроксидов — слоистые гидроксиды редкоземельных элементов, которые могут светиться, катализировать химические реакции и обладают магнитными свойствами.

Слоистые гидроксиды используют в тех же сферах, что и редкоземельные элементы, и иногда они работают эффективнее. Например, слоистый гидроксид гадолиния как контрастный агент МРТ улучшает видимость тканей и органов на изображениях, при этом его токсичность ниже, чем у других соединений гадолиния.

Для получения слоистых гидроксидов используют осаждение щелочами или гомогенный гидролиз в присутствии органических оснований. У обоих методов есть недостатки. Осаждение щелочами проводится в два этапа и требует много усилий: синтезированные частицы гидроксида нужно дополнительно обрабатывать при высоком давлении и температуре, чтобы добиться правильного размера. А при гомогенном гидролизе необходимо держать смесь сутки в герметичном устройстве под давлением и при температуре 100°.

Исследователи факультета химии НИУ ВШЭ и Института общей и неорганической химии РАН имени Н.С. Курнакова предложили упрощенный и более экономичный способ получения слоистых гидроксидов. Как осадитель гидроксидов впервые использовали оксид пропилена. Исследования проводились на примере хлорида европия, но метод универсален для получения слоистых гидроксидов любых редкоземельных элементов.

В предложенном методе к раствору хлорида европия добавляли предварительно рассчитанную  концентрацию оксида пропилена, нагревали смесь до 50° и держали 2 часа при постоянном перемешивании в стакане. В результате получалось большое количество слоистого гидроксида европия.

Затем с помощью растровой электронной микроскопии и рентгеноспектрального микроанализа ученые измерили и подтвердили, что в полученном соединении правильные размер и форма частиц и соотношение «европий — хлор».

 

 Спектры люминесценции гидроксохлорида европия, интеркалированного бензоат- и изоникотинат-анионами, с фотографиями, как это выглядит в реальности.

От характеристик гидроксида зависят свойства материала, который будут из него получать, поэтому важно соблюдать определенную форму и размер частиц. А соотношение «европий — хлор» влияет на эффективность реакций анионного обмена, благодаря которым получаются новые гибридные материалы. Идеальное соотношение — 2 европия на 1 хлор. Если хлора сильно меньше, значит, на его место встали карбонат-анионы, которые препятствуют обмену. В материале исследователей получилось правильное соотношение: 2 европия на 0,98 хлора.

«Слоистые гидроксиды — универсальная матрица, итоговые свойства которой зависят от элементов в составе. Можно сравнить их с сэндвичем, вкус которого меняется в зависимости от начинки. Представим, что у нас два куска хлеба в сэндвиче, анионообменные свойства — пустое пространство между ними, интеркаляция — добавление начинки. Исходно между кусочками хлеба есть только лист салата — это хлор. И нам салат не нравится, хотелось бы колбасу с сыром. Мы лист салата убираем и меняем на колбасу с сыром. Это и есть процесс интеркаляции — замена одних анионов на другие», — рассказала один из авторов статьи Екатерина Шейченко — выпускница факультета химии НИУ ВШЭ.

Ученые провели анионообменные реакции получившегося гидроксида с бензоат- и изоникотинат-анионами и получили гибридные материалы. Исследователи отмечают, что реакции обмена в материалах происходили быстрее, чем в слоистых гидроксидах, полученных альтернативными способами. Причем изоникотинат-анион интеркалировали впервые, в результате получился порошок с люминесцентными свойствами.

«В литературе встречаются примеры, где аналогичные люминесцентные материалы используют как твердофазные термометры, которые меняют свой цвет в зависимости от температуры. Например, на синий — если холодно, и на оранжевый — если жарко. Сейчас таких материалов еще нет в производстве, но, возможно, они появятся в будущем», — отметила Шейченко.

В дальнейшем исследователи планируют разрабатывать новые гибридные материалы на основе слоистых гидроксидов. Сейчас они работают над созданием фотокатализаторов, которые под воздействием света активируют разложение лекарств или красителей в сточных водах на безвредные для природы и человека соединения.

 

Изображение: НИУ ВШЭ

Нет комментариев