Если вы открыли календарь на 5 мая 2025 года и ничего не заметили — самое время исправить эту несправедливость. Ведь это не просто дата, а настоящий математический праздник: День квадратного корня. Он бывает только девять раз за столетие, и следующий — лишь в 2036 году.
Что же делает 05.05.25 такой особенной датой? Все дело в структуре: число месяца (5) является квадратным корнем из последних двух цифр года (25). 5 × 5 = 25. И хотя математика кажется вечной, такие совпадения — дело крайне редкое. Формат даты играет ключевую роль: праздник можно «увидеть» только в системах, где сначала пишется день и месяц, и затем последние две цифры года — как, например, в России (дд/мм/гг) или США (мм/дд/гг).
Автор идеи такого необычного праздника — Рон Гордон, учитель средней школы из Калифорнии, настоящий энтузиаст математики. Он придумал День квадратного корня, чтобы вдохновить учеников взглянуть на числа с неожиданной стороны. Первый такой день прошел 9 сентября 1981 года — 09/09/81, ведь 9² = 81.
С тех пор праздник приобрел популярность среди математиков, педагогов и просто любителей числовой красоты. Его отмечают викторинами, математическими флешмобами и занятиями, где показывают, как числа могут быть не только полезными, но и эстетически гармоничными.
Казалось бы, простое совпадение. Но в этом и прелесть математики — она умеет удивлять даже в самых банальных вещах. Квадратный корень — фундаментальное понятие, которое мы встречаем в алгебре, геометрии, физике, инженерии и даже в дизайне. Он противоположен возведению в квадрат: если 5² = 25, то √25 = 5. И это не просто обратная операция, а ключ к симметрии, пропорциям и решениям уравнений, без которых не обойтись ни в одном научном исследовании.
Только 9 дат в каждом столетии могут считаться Днём квадратного корня. Первый день 21-го века, 1 января 2001 года (01.01.01), был Днём квадратного корня. Другие прошлые и будущие Дни квадратного корня в этом столетии:
- 2 февраля 2004 года (02/02/04): 2 X 2 или 2² = 4;
- 3 марта 2009 года (03/03/09): 3 X 3 или 3² = 9;
- 4 апреля 2016 года (04/04/16): 4 X 4 или 4² = 16;
- 5 мая 2025 года (05/05/25): 5 X 5 или 5² = 25;
- 6 июня 2036 года (06/06/36): 6 X 6 или 6² = 36;
- 7 июля 2049 года (07/07/49): 7 X 7 или 7² = 49;
- 8 августа 2064 года (08/08/64): 8 X 8 или 8² = 64;
- 9 сентября 2081 года (09/09/81): 9 X 9 или 9² = 81.
Каждая из них — своеобразная математическая открытка, спрятанная во времени.
Если ждать до следующего Дня квадратного корня вам не хочется, не беда — в календаре математика хватает торжеств:
- День числа Пи (3.14–14 марта);
- День теоремы Пифагора (следующий придется на 24 июля 2025 года);
- День числа e (число Эйлера, 2.71…, отмечается 7 февраля);
- День числа Тау (6.28 — в два раза больше Пи, и отмечается он 28 июня);
- День Фибоначчи (23 ноября — 1,1,2,3...);
- День желтой свиньи (шуточный праздник, посвящённый математическому перфекционизму, который отмечают 17 июля).


