Одним из новых научных направлений является исследование метаматериалов. Так называется группа искусственных композитов с необычными физическими свойствами, не встречающимися в природных материалах. Ученый физико-технического факультета Томского государственного университета Линар Ахметшин в рамках стратпроекта «Технологии безопасности», поддержанного федеральной программой «Приоритет 2030», провел серию экспериментов, нацеленных на программирование свойств метаматериалов и создание на их основе продуктов с особым функционалом. Результаты исследования представлены в журнале «Вестник ТГУ» (Механика).
Отличительной чертой метаматериалов является то, что их свойства зависят не от химического состава каркаса, а от структуры, которая организована особым образом. Из-за этого реакция метаматериала на внешнее воздействие тоже будет специфической, – говорит руководитель проекта доцент кафедры механики деформируемого твердого тела физико-технического факультета ТГУ Линар Ахметшин. – В рамках эксперимента я исследовал материалы с тетрахиральной структурой. Хиральность – это свойство предмета не накладываться на своё зеркальное отображение. Хиральная структура придаёт материалу необычные свойства. К примеру, если сжимать его по оси Y, то в плоскости Х-Z он будет каким-то образом сжиматься и скручиваться. Обычные материалы так себя не ведут.
Другим еще более интересным свойством метаматериалов является способность отклонять и замедлять свет. Отрицательный коэффициент преломления позволяет скрывать объекты в одном из диапазонов электромагнитной волны. Поэтому в перспективе могут появиться самолеты, невидимые для радаров.
Чтобы управлять свойствами метаматериалов, нужно понимать, что происходит при изменении их структуры. Процесс открытия материалов теперь также может опираться на вычислительные подходы, позволяющие быстро рассчитать механические свойства возможных материалов. Проектирование структуры метаматериалов идеально подходит для цифровых методов, которые позволяют быстро и эффективно исследовать множество возможных геометрических и структурных решений и проверять их численно.
Ученый ФТФ ТГУ воздействовал на образцы метаматериалов посредством сжатия. Регулярная элементарная ячейка метаматериала при нагружении по трем ортотропным осям не меняла свои физико-механические свойства. Различные преобразования ячейки (введение топологических дефектов) приводили к изменениям свойств, увеличивая или уменьшая эффект.
Дефект воспринимается обычно со знаком минус, но в моих исследованиях это просто инструмент. С его помощью удалось получить ряд новых фундаментальных знаний о метаматериалах на финальном этапе моего исследования – при сжатии и разрушении образцов, напечатанных на 3D-принтере, – объясняет Линар Ахметшин. – Так, угол поворота у регулярной ячейки равен 1,8°. Внедренный топологический дефект снизил угол вращения ячейки более чем на 60 % и заметно повысил жесткость материала. При этом жесткость ячейки с топологическим дефектом изменяется по оси нагружения и становится выше, когда дефект находится на нижней стороне кубического образца.
Точек приложения новых знаний о метаматериалах множество. Например, программируя материалы, можно ослаблять или поглощать энергию колебаний – и за счет этого создавать ударозащитные конструкции с особой прочностью. Использование такого свойства, как отрицательное преломление, даёт возможность создавать новые решения в биомедицине, электронике и других областях.
Грамотное использование метаматериалов может вывести человечество на новый технологический уровень. Исследование ученого ТГУ дает новое фундаментальное знание, которое необходимо, чтобы программировать у метаматериалов новый функционал.