Цифровые технологии помогут диагностировать сердечные заболевания - Поиск - новости науки и техники
Поиск - новости науки и техники

Цифровые технологии помогут диагностировать сердечные заболевания

Математики СКФУ разработали эффективную систему распознавания сердечно-сосудистых заболеваний по сигналам ЭКГ. Предложенный подход показал более высокую точность, чем его аналоги. Он позволяет повысить качество ранней диагностики проблем с сердцем, что очень важно для предупреждения опасных заболеваний.

Как отметили ученые, сегодня сердечно-сосудистые заболевания – это основная причина смерти в развитых странах, и число пациентов, наблюдающихся у кардиолога, с каждым днем растет. Для выявления проблем с сердцем используется электрокардиограмма (ЭКГ), но врачи в среднем оценивают полученные данные с точностью от 65 до 70 процентов. В остальных случаях информация истолковывается неверно, что негативно сказывается на здоровье пациентов.

Математики СКФУ предложили оригинальный подход, повышающий точность определения мерцательной аритмии (фибрилляции предсердий), повышающей риск ишемического инсульта.

“Мы разработали новую архитектуру с передовой рекуррентной структурой нейронной сети, – пояснил руководитель проекта, заведующий кафедрой математического моделирования СКФУ и отделом модулярных вычислений и искусственного интеллекта регионального научно-образовательного математического центра «Северо-Кавказский центр математических исследований» при вузе Павел Ляхов. – Для более точной интерпретации сигналов мы используем предварительную цифровую обработку данных с помощью цифровых фильтров, спектрального анализа и некоторых других методов. Благодаря этому нам удалось существенно снизить шумы различной природы, искажающие сигнал электрокардиограммы. В результате мы смогли повысить точность интерпретации данных до 87,5 процентов. У лучших зарубежных аналогов этот показатель достигает 79-83 процентов”.

Для обучения нейронной сети использовалась открытая база сигналов кардиограмм «PhysioNet Computing in Cardiology Challenge» (CinC Challenge). Во время первой симуляции сеть изучила данные 976 кардиограмм, а во время второй ей предложили 5754 кардиограммы.

“Наш подход не требует каких-то специализированных технических средств, – отметила аспирантка, научный сотрудник кафедры математического моделирования СКФУ Ульяна Ляхова. – Предложенное нами решение может быть реализовано в виде специальной программы, которая на входе будет получать сигнал кардиограммы, а на выходе выдавать свой вердикт, нуждается ли человек в лечении или профилактике сердечно-сосудистых заболеваний. В перспективе мы хотим обобщить наш подход и применить его для обработки других биомедицинских сигналов, полученных с тела человека. Большой интерес для нас представляет и обработка мозговых сигналов по электроэнцефалограмме. Подобные исследования сейчас очень актуальны для разработки интерфейса «мозг-компьютер», позволяющего управлять компьютером с помощью своих мыслей без мышек и клавиатуры”.

О результатах исследования участники проекта рассказали в специальном выпуске «Advanced Information Processing Methods and Their Applications» («Передовые методы обработки информации и их применение») научного журнала «Applied Sciences» («Прикладные науки») швейцарского издательства MDPI. Прочитать статью можно, перейдя по ссылке.

Управление по информации и связям общественностью СКФУ

28.09.2021

Нет комментариев

Загрузка...
Новости СМИ2